Propeller
The propeller is usually attached to the crankshaft of a piston engine, either directly or through a reduction unit. Light aircraft engines often do not require the complexity of gearing but on larger engines and turboprop aircraft it is essential.
Hıstory
The twisted airfoil (aerofoil) shape of
modern aircraft propellers was pioneered by the Wright brothers. While some earlier engineers had attempted to model air propellers on marine propellers, the Wrights realized that a propeller is essentially the same as a wing, and were able to use data from their earlier wind tunnel experiments on wings. They also introduced a twist along the length of the blades. This was necessary to ensure the angle of attack of the blades was kept relatively constant along their length. Their original propeller blades had an efficiency of about 82%, compared to the 90% of modern propellers. Mahogany was the preferred wood for propellers through World War I, but wartime shortages encouraged use of walnut, oak, cherry and ash.
Alberto Santos Dumont was another early pioneer, having designed propellers before the Wright Brothers (albeit not as efficient) for his airships. He applied the knowledge he gained from experiences with airships to make a propeller with a steel shaft and aluminium blades for his 14 bis biplane. Some of his designs used a bent aluminium sheet for blades, thus creating an airfoil shape. They were heavily undercambered, and this plus the absence of lengthwise twist made them less efficient than the Wright propellers. Even so, this was perhaps the first use of aluminium in the construction of an airscrew.
Originally, a rotating airfoil behind the aircraft, which pushes it, was called a propeller, while one which pulled from the front was a tractor. Later the term 'pusher' became adopted for the rear-mounted device in contrast to the tractor configuration and both became referred to as 'propellers' or 'airscrews'.
The understanding of low speed propeller aerodynamics was fairly complete by the 1920s, but later requirements to handle more power in a smaller diameter have made the problem more complex.
Propeller control
Variable pitch
The purpose of varying pitch angle with a variable-pitch propeller is to maintain an optimal angle of attack (maximum lift to drag ratio) on the propeller blades as aircraft speed varies. Early pitch control settings were pilot operated, either two-position or manually variable. Following World War I, automatic propellers were developed to maintain an optimum angle of attack. This was done by balancing the centripetal twisting moment on the blades and a set of counterweights against a spring and the aerodynamic forces on the blade. Automatic props had the advantage of being simple, lightweight, and requiring no external control, but a particular propeller's performance was difficult to match with that of the aircraft's powerplant. An improvement on the automatic type was the constant-speed propeller. Constant-speed propellers allow the pilot to select a rotational speed for maximum engine power or maximum efficiency, and a propeller governor acts as a closed-loop controller to vary propeller pitch angle as required to maintain the selected engine speed. In most aircraft this system is hydraulic, with engine oil serving as the hydraulic fluid. However, electrically controlled propellers were developed during World War II and saw extensive use on military aircraft, and have recently seen a revival in use on homebuilt aircraft.
On some variable-pitch propellers, the blades can be rotated parallel to the airflow to reduce drag in case of an engine failure. This uses the term feathering, loaned from rowing. On single-engined aircraft, whether a powered glider or turbine powered aircraft, the effect is to increase the gliding distance. On a multi-engine aircraft, feathering the propeller on a failed engine allows the aircraft to maintain altitude with the reduced power from the remaining engines.
Most feathering systems for reciprocating engines sense a drop in oil pressure and move the blades toward the feather position, and require the pilot to pull the propeller control back to disengage the high-pitch stop pins before the engine reaches idle RPM. Turboprop control systems usually utilize a negative torque sensor in the reduction gearbox which moves the blades toward feather when the engine is no longer providing power to the propeller. Depending on design, the pilot may have to push a button to override the high-pitch stops and complete the feathering process, or the feathering process may be totally automatic.
Reverse pitch
In some aircraft, such as the C-130 Hercules, the pilot can manually override the constant-speed mechanism to reverse the blade pitch angle, and thus the thrust of the engine (although the rotation of the engine itself does not reverse). This is used to help slow the plane down after landing in order to save wear on the brakes and tires, but in some cases also allows the aircraft to back up on its own - this is particularly useful for getting floatplanes out of confined docks. See also Thrust reversal.That's all from me.
Categories:
Erol
Thank you for your info about plane propeller. Now I understand how important it is in aviation sector. But as I read your page I realiza that the development of propeller in every sector whether in shape or function hasn't made any big difference. I hope our generation as time goes by can make it more usefull not only in aviation sector but also in another sector.
It is helpful to understand the propeller . You gave more information about the propeller . But I think other ones most attractive than this . Anyway , thank you for writing
Hi Erol , When i took a look at your page , i'm fulled with lots of information about propeller , but unfortunately there's not enough visual documentation on propeller. It would've been better if you had supported it with some videos.Thanks for your work though.